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SUMMARY

Plant-pathogenic fungi secrete effector proteins to facilitate

infection. We describe extensive improvements to EffectorP, the

first machine learning classifier for fungal effector prediction.

EffectorP 2.0 is now trained on a larger set of effectors and uti-

lizes a different approach based on an ensemble of classifiers

trained on different subsets of negative data, offering different

views on classification. EffectorP 2.0 achieves an accuracy of

89%, compared with 82% for EffectorP 1.0 and 59.8% for a

small size classifier. Important features for effector prediction

appear to be protein size, protein net charge as well as the

amino acids serine and cysteine. EffectorP 2.0 decreases the

number of predicted effectors in secretomes of fungal plant sym-

bionts and saprophytes by 40% when compared with EffectorP

1.0. However, EffectorP 1.0 retains value, and combining Effec-

torP 1.0 and 2.0 results in a stringent classifier with a low false

positive rate of 9%. EffectorP 2.0 predicts significant enrichments

of effectors in 12 of 13 sets of infection-induced proteins from

diverse fungal pathogens, whereas a small cysteine-rich classifier

detects enrichment in only seven of 13. EffectorP 2.0 will fast

track the prioritization of high-confidence effector candidates for

functional validation and aid in improving our understanding of

effector biology. EffectorP 2.0 is available at http://effectorp.

csiro.au.

Keywords: effector, EffectorP, effector prediction, fungal

pathogens, machine learning, secretomes.

INTRODUCTION

Fungal pathogens have been estimated to cause annual crop yield

losses of 15%–20% and are a major threat to food security

(Figueroa et al., 2007; Fischer et al., 2012). Fungi colonize plants

through diverse infection structures and the use of toxic fungal

secondary metabolites and secreted effector proteins that alter

host cell structure and function, suppress plant defence responses

or modulate plant cell physiology (Kamoun, 1983; Lo Presti et al.,

2014). Effectors are used by plant-pathogenic fungi and symbiotic

fungi to allow them to colonize their hosts. Fungal effectors can

be attached to the fungal cell wall, can function in the plant apo-

plast or can translocate into plant cells where they may target

specific host proteins or enter subcellular compartments (Lo Presti

et al., 2014). Accurate effector mining from genomic sequences is

crucial to subsequent experimental validation and effector identifi-

cation can enable disease control strategies. For example, effec-

tors can be used directly in effector-assisted breeding to select

plant lines with distinct recognition traits (Vleeshouwers and

Oliver, 2014), and the identification of both effectors and their tar-

gets could allow ‘decoy engineering’, where effector targets are

fused as baits to a plant immune receptor to make an integrated

‘effector trap’ (Ellis, 2011).

Recent progress in big data genomics has resulted in many

high-quality fungal pathogen genomes and gene expression pro-

files during plant infection, but accurate effector prediction meth-

ods are needed to harness the potential of these resources. The

set of secreted proteins expressed during infection is typically too

large for experimental investigation and contains many secreted

non-effectors that play roles in niche colonization and protection

from competing microbes, differentiation of fungal structures and

cell-to-cell communication (Rovenich et al., 2014). Secreted plant

cell wall-degrading enzymes (PCWDEs) are used by saprophytic

fungi to acquire sugars for their nutrition and survival (Kubicek

et al., 2011). Necrotrophic plant-pathogenic fungi use PCWDEs to

overcome the barrier of the cell wall, as well as for nutrient acqui-

sition, whereas biotrophic plant-pathogenic fungi utilize PCWDEs

to facilitate stealth invasion of living plant cells (Gibson et al.,

2001).Some PCWDEs in plant-pathogenic fungi may include effec-

tors specifically required for penetration (Lo Presti et al., 2014);

however, these can be predicted based on the presence of con-

served enzymatic structures or sequence domains. In contrast, the

vast majority of fungal effectors are diverse in sequence and share

no conserved sequence motifs or obvious commonalities, apart

from their secretion from pathogen to the host. This lack of appa-

rent unifying sequence-based features has led to ad-hoc fungal*Correspondence: Email: jana.sperschneider@csiro.au
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effector prediction approaches that are based on various combina-

tions of characteristics observed in known effectors, such as a

small protein size, a high cysteine content, evidence of diversifying

selection, the genomic location of the gene in fast-evolving

regions or gene expression in planta (Sperschneider et al., 2017).

The inclusion of only a few features in effector prediction, such as

the requirement of a small protein size, typically results in many

false positive predictions and often overwhelmingly large effector

candidate sets, such as 1088–2092 effector candidates predicted

in stripe rust (Petre et al., 2011). However, the inclusion of addi-

tional features associated with effectors will capture only a small

subset as none of these signals are common to all effectors. For

example, some fungal effectors are highly enriched in cysteines,

whereas others do not feature any cysteines in their sequence,

and fungal effectors also vary in size. For example, the Pyreno-

phora tritici-repentis ToxB effector has 87 amino acids with four

cysteines, and is thought to function in the plant apoplast

(Figueroa et al., 2017), whereas the Melampsora lini AvrM effec-

tor has a sequence length of 314 amino acids and only one cyste-

ine, and acts intracellularly (Catanzariti et al., 2004). However, a

high cysteine content or small protein size alone does not allow

for the accurate discrimination of apoplastic effectors from cyto-

plasmic effectors in fungi (Sperschneider et al., 2008). Taken

together, the use of predefined criteria for effector prediction

inherits the individual researcher’s potentially biased view of

effector characteristics and is unable to uncover novel effectors

with diverse characteristics.

An alternative approach is to use data to learn which features

are important for effector prediction, rather than setting prede-

fined criteria. This is achieved with machine learning, a family of

statistical learning methods with the ability to identify patterns in

data and recognize a particular class based on its features in

observed data. Models trained on datasets of positive and nega-

tive classes are then applied to identify new instances of the class

in unseen data. This data-driven approach has the capacity to

identify new features not apparent to manual inspection and to

provide probabilistic predictions based on combinations of fea-

tures, which represent advantages over the use of predefined cri-

teria with binary cut-offs. We have recently pioneered such a

machine learning approach for fungal effector prediction, called

EffectorP (Sperschneider et al., 1996), and have demonstrated

that machine learning can accurately predict novel effectors with

diverse characteristics from secretomes, as well as their localiza-

tion in the plant cell (Sperschneider et al., 2011, 2011). We have

shown that EffectorP 1.0 is able to learn ‘effector rules’ from posi-

tive and negative training examples without having to apply user-

chosen thresholds (Sperschneider et al., 1996). EffectorP relies on

fungal effectors as the positive training set and secreted non-

effectors as the negative set. One limiting factor is that the nega-

tive training set consists of both undiscovered effectors and

secreted non-effectors, and therefore poses an unlabelled data

classification problem. Furthermore, the positive training set used

in EffectorP 1.0 is small and additional effectors are now available

for inclusion in training. This has the potential to improve accuracy

and will enable us to re-evaluate the ability of machine learning

to accurately predict fungal effectors.

RESULTS

Training of the ensemble classifier EffectorP 2.0

EffectorP 1.0 is a Na€ıve Bayes classifier that was trained on a posi-

tive training set of 58 experimentally supported fungal effectors

from 16 fungal species. Since its development, additional fungal

effectors have been described and, for EffectorP 2.0, we used an

expanded training set of 94 secreted fungal effectors from 23 spe-

cies (Table 1). EffectorP 1.0 predicts 73% of the unseen effectors

correctly, which demonstrates its ability to identify novel effectors,

but also leaves room for improvement. We set out to investigate

whether re-training of EffectorP would improve prediction

accuracy.

EffectorP 1.0 was trained on a negative set consisting of pre-

dicted secreted proteins from the same pathogen species as the

known effectors. Thus, the negative training set includes both

undiscovered effectors and non-effectors, and therefore poses an

unlabelled data classification problem. Although Na€ıve Bayes clas-

sifiers are fairly robust to unlabelled data classification and can

tolerate noisy data (Bing et al., 2007), other machine learning

classifiers might not be able to learn effectively from such sets. To

improve predictions, we collected three different subsets of nega-

tive training data that are less likely to contain positive instances,

i.e. fungal effectors. First, secretomes were predicted from the

same fungal pathogen/symbiont species as used in the positive

set if they had a publicly available predicted gene set (Table 1).

The combined secretome was homology reduced and this resulted

in a filtered predicted pathogen secretome of 11 277 proteins.

This set will contain both undiscovered effectors and secreted

non-effectors, which poses a challenge for machine learning clas-

sifiers that traditionally learn from labelled data. Therefore, we

applied EffectorP 1.0 to exclude predicted effectors from the

secretomes (n 5 6138). This procedure removed predominantly

small, cysteine-rich proteins from the negative training set (aver-

age sequence length, 137 amino acids; average cysteine content,

3.55%). We also collected homology-reduced sets of secreted fun-

gal proteins from fungi not pathogenic on plants, namely from 27

saprophyte secretomes (n 5 12 939) and from 10 animal-

pathogenic fungal secretomes (n 5 2763). These sets are less

likely to contain plant-pathogenic effectors and were not filtered

for EffectorP 1.0-predicted effectors.

As we have large amounts of negative training data

(n 5 21 840), we used an ensemble learning approach of

Prediction of fungal effectors with EffectorP 2.0
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classifiers that each take a different subset of negative training

data and thus provide a different view on classification (Fig. 1).

Overall, we chose a total of 50 best-performing models compris-

ing: 10 Na€ıve Bayes classifiers and 10 C4.5 decision trees that dis-

criminate between fungal effectors and secreted pathogen

proteins; 10 Na€ıve Bayes classifiers and 10 C4.5 decision trees

that discriminate between fungal effectors and secreted sapro-

phyte proteins; and five Na€ıve Bayes classifiers and five C4.5 deci-

sion trees that discriminate between fungal effectors and secreted

animal pathogen proteins. In 10-fold cross-validation, the Na€ıve

Bayes classifiers achieve, on average, high sensitivity, whereas

the C4.5 decision trees show high specificity (Table S2, see

Supporting Information). To generate EffectorP 2.0, we combined

these 50 models into an ensemble classifier to utilize their distinct

prediction strengths (Fig. 1). Each model has seen a different sub-

set of negative training data and, for a given protein sequence

input, returns a probability of whether it is an effector or a non-

effector. EffectorP 2.0 returns a final prediction using a voting

approach on the predicted probabilities of each model. A protein

is classified as an effector if the average probability for the class

‘effector’ is higher than the average probability for the class ‘non-

effector’. For each protein in the training set, EffectorP 1.0 utilizes

a feature vector that is calculated using amino acid frequencies,

amino acid class frequencies, molecular weight, sequence length

and protein net charge (Sperschneider et al., 1996). EffectorP 2.0

uses an updated feature vector that includes amino acid frequen-

cies, amino acid class frequencies, molecular weight, protein net

charge, grand average of hydrophobicity, as well as the averages

of surface exposure, disorder propensity, hydrophobicity, bulkiness

and interface propensity (Table 2).

Influential features for effector prediction include

protein size, protein net charge as well as the amino

acids serine and cysteine

To detect the most discriminative features in the EffectorP 2.0

classification, we analysed the distribution of features for the pro-

teins employed in the training of all 50 models. Four features

were found to be different at a significance threshold of P < 1025

in distribution between the positive sequence set (effectors) and

the negative sequence set (proteins labelled as non-effectors)

(Fig. 2). Differences in feature distribution for these four features

were also reported previously in the EffectorP 1.0 model as partic-

ularly striking (Sperschneider et al., 1996), confirming their impor-

tance in fungal effector classification. As a group, the effectors

exhibit lower molecular weight, a higher percentage of cysteines

(C) and a lower percentage of serines (S) than the proteins in the

negative sequence set. The distribution of protein net charge for

effectors occupies a narrow range around neutral to slightly

Table 1 The set of fungal effector proteins used as positive training data.

Species Effector

Melampsora lini AvrM, AvrL567-A, AvrP123, AvrP4, AvrM14, AvrL2-A
Uromyces fabae RTP1
Puccinia graminis f. sp. tritici PGTAUSPE-10-1, AvrSr50
Puccinia striiformis f. sp. tritici PstSCR1, Pec6
Phakopsora pachyrhizi PpEC23
Blumeria graminis f. sp. hordei Avrk1, Avra1, Avra13
Blumeria graminis f. sp. tritici AvrPm2
Cladosporium fulvum Avr9, Avr4, Avr4E, Avr2, Avr5, Ecp1, Ecp2, Ecp4, Ecp5, Ecp6
Leptosphaeria maculans AvrLm6, AvrLm4–7, AvrLm1, AvrLm11
Fusarium oxysporum f. sp. lycopersici Six4, Six3, Six1, Six6, Six2, Six5, Six7, Six8
Magnaporthe oryzae Avr-Pita, Pwl1, Avr-Pia, Bas3, Bas2, Bas4, Bas1, MC69, AvrPiz-t, Avr1-CO39, Avr-Pii, Avr-Pik,

Bas107, AvrPib, Iug6, Iug9, Msp1, MoHEG13, MoCDIP1, MoCDIP2, MoCDIP3, MoCDIP4,
MoCDIP5, SPD2, SPD4, SPD7, SPD9, SPD10, Bas162, AvrPi9

Rhynchosporium secalis NIP1, NIP2, NIP3
Verticillium dahliae Vdlsc1, Ave1, VdSCP7, PevD1
Ustilago maydis Cmu1, Pep1, Pit2, Tin2, eff1-1, See1
Ustilago hordei UhAvr1
Stagonospora nodorum ToxA, Tox1, Tox3
Botrytis cinerea Nep1
Pyrenophora tritici-repentis ToxB
Laccaria bicolor MiSSP7
Zymoseptoria tritici AvrStb6, Zt6
Colletotrichum graminicola CgEP1, Cgfl
Fusarium graminearum FGL1
Sclerotinia sclerotiorum SsSSVP1

Ninety-four fungal effectors were collected from the literature if they had experimental support and did not share sequence homology. Effectors that were not

part of the EffectorP 1.0 training set are marked in bold. All sequences are available at: http://effectorp.csiro.au/data.html.
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positive (Fig. 2). We also found significant differences (P < 0.05)

in distribution between effectors and the negative sequence set

for additional features (Fig. 2). These were depletion in aliphatic

amino acids, leucine (L), proline (P), threonine (T), tryptophan (W),

disorder propensity and bulkiness, as well as enrichment in basic

amino acids, interface propensity, glycine (G), lysine (K) and

asparagine (N), for effectors. Only enrichment in tryptophan con-

tent in effectors was also reported in the EffectorP 1.0 model.

Table 2 Features used for training the machine learning classifiers in the EffectorP 2.0 ensemble learner.

Features used in training and classification Method

Frequencies of amino acids (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, Y) in the sequence

pepstats (Rice et al., 2000)

Frequencies of amino acid classes in the sequence:
Tiny (A1C1G1S1T)
Small (A1B1C1D1G1N1P1S1T1V)
Aliphatic (I1L1V)
Aromatic (F1H1W1Y)
Non-polar (A1C1F1G1I1L1M1P1V1W1Y)
Polar (D1E1H1K1N1Q1R1S1T1Z)
Charged (B1D1E1H1K1R1Z)
Basic (H1K1R)
Acidic (B1D1E1Z)
Molecular weight
Protein net charge
Grand average of hydropathicity (GRAVY, Kyle and Doolittle, 1982) ProtParam (Gasteiger et al., 2005)
Average of surface exposure (Janin, 1979) Amino acid groupings and scales taken from

Composition Profiler (Vacic et al., 2007)
Average of disorder propensity (Dunker et al., 2001)
Average of hydrophobicity (Fauchere and Pliska, 1983)
Average of bulkiness (Zimmerman et al., 1968)
Average of interface propensity (Jones and Thornton, 1997)

Fig. 1 Workflow for the EffectorP 2.0 classifier that combines an ensemble of machine learning classifiers. Each classifier Ci has seen a different subset of the

negative training data and predicts effectors in unseen data with probability Pi. The probabilities are combined into an overall vote on whether an unseen protein is

an effector or non-effector.
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Machine learning can be a black box learning process where

the reasons for an individual prediction are hidden. However, C4.5

decision trees are white box models and their decision-making

process is transparent through navigation along tree branches. As

examples, we plotted two of the 10 C4.5 decision trees that

discriminate between fungal effectors and secreted pathogen

proteins (Figs S1 and S2, see Supporting Information). This

demonstrates that the decision tree classifiers use a complex set

of features and not only the most discriminative features (protein

size, protein net charge as well as the amino acids serine and cys-

teine) for effector classification. In particular, the decision tree in

Fig. S2 does not utilize serine content as a feature in classification

and still achieves high classification accuracy. Taken together, this

analysis confirms the importance of specific combinations of

Fig. 2 The most influential features in effector prediction appear to be a small protein size, low serine content, a protein net charge around the neutral range and a

high cysteine content. Significant differences (P < 0.05) in distribution between effectors and the negative sequence set for additional features were also observed.

These were depletion in aliphatic amino acids, leucine (L), proline (P), threonine (T), tryptophan (W), disorder propensity and bulkiness, as well as enrichment in basic

amino acids, interface propensity, glycine (G), lysine (K) and asparagine (N), for effectors. Extreme outliers in the protein net charge plot were removed for clarity (full

figure given in Fig. S3, see Supporting Information). All data points are drawn on top of the box plots as black dots. Significance between groups is shown as

horizontal brackets and was assessed using t-tests. The lower and upper hinges correspond to the first and third quartiles and the upper (lower) whiskers extend from

the hinge to the largest (smallest) value that is within 1.5 times the interquartile range of the hinge. Data beyond the end of the whiskers are outliers.
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features, as found previously in the EffectorP 1.0 model, but also

illustrates that accurate fungal effector prediction machine learn-

ing classifiers rely on a diverse set of features.

EffectorP 2.0 improves fungal effector prediction

accuracy from secretomes

Machine learning classifiers can overfit/overtrain to memorize the

training data, which leads to low accuracy on unseen data. There-

fore, independent test sets are important to estimate prediction

ability. We collected independent positive and negative test sets

to assess the performance of EffectorP 2.0. To estimate the false

positive rate, we first used fungal, plant and mammalian proteins

with predicted signal peptides that were not extracellular [local-

ization to endoplasmic reticulum, Golgi or membranes or with gly-

cosylphosphatidylinositol (GPI) anchors]. A low false positive rate

on these proteins ensures that EffectorP is not merely predicting

the presence of a signal peptide. We also used secreted sapro-

phyte proteins as well as fungal proteins from PHI-base (Urban

et al., 2007) that were annotated as having an unaffected patho-

genicity phenotype. Although proteins with an unaffected patho-

genicity phenotype are not necessarily non-effectors, we expect to

see a low percentage of predicted effectors. A simple classifier

based on a small protein size (�300 amino acids) has a false posi-

tive rate of 40.4% on these three sets. A small, cysteine-rich clas-

sifier (�300 amino acids; �4 cysteines) has a false positive rate

of 19%, and EffectorP 1.0 has a false positive rate of 18.3%.

EffectorP 2.0 has the lowest false positive rate of 11.2% (Table 3).

A combination of EffectorP 1.0 and 2.0, where a protein is a pre-

dicted effector only if both classifiers label it as an effector,

achieves the lowest false positive rate of 9.4%.

To assess false negative predictions, we also applied these pre-

dictors to the training data of 94 fungal effectors (Table 3). EffectorP

2.0 only predicts five of these proteins as non-effectors: the Phakop-

sora pachyrhizi effector PpEC23, the Blumeria graminis f. sp. hordei

effector Avrk1, the Magnaporthe oryzae effector MoCDIP2, the Usti-

lago maydis effector eff1-1 and the Colletotrichum graminicola met-

alloproteinase effector Cgfl. This is an improvement on EffectorP

1.0, which correctly predicted only 80 of the 94 positive examples.

However, it is also important to assess overfitting on training data

and to use unseen fungal effectors independent from the training

set for the validation of the estimated true positive rate. Therefore,

we collected 21 effectors (Table 4) that either shared sequence simi-

larity with an effector in the training set and were therefore elimi-

nated in the homology reduction step (Mg3LysM, BEC1054,

BEC1011, AvrLm2) or were overlooked during initial literature

searches for training the EffectorP 2.0 model (SAD1, CSEP-07,

CSEP-09, SIS1, CSEP0055, BEC1019, Bcg1, CSEP0105, CSEP0162,

AvrLmJ1, AvrLm3, XylA, Ecp7, PIIN_08944, FGB1, AvrPm3,

AvrSr35). On this independent test set, both EffectorP 1.0 and 2.0

show equal performance and correctly predict 76.2% of effectors

(Tables 3 and 4). On the total set of 115 effectors, the small size

classifier correctly predicts 93% of effectors, but the small, cysteine-

rich classifier only correctly predicts 54.8% of effectors. On the

combined positive and negative sets, EffectorP 2.0 has the highest

accuracy of 88.8% of the four single classifiers. The simple classifier

based on a small size has the lowest accuracy of 59.8%, largely

because of its high false positive rate (Table 3). The combined Effec-

torP 1.0/2.0 classifier achieves the highest accuracy of 90.5%

because of its low false positive rate. Although the combined Effec-

torP 1.0/2.0 classifier misses more effectors than EffectorP 2.0 or

1.0, it is a highly stringent method for the prediction of effectors in

secretomes. In the following, we assess the prediction abilities of

EffectorP 1.0 compared with EffectorP 2.0 in more detail.

Sets of infection-induced proteins are enriched for

effectors predicted by EffectorP 2.0

Effectors are often induced during infection, and thus the set of

genes differentially expressed during infection should be enriched

Table 3 Independent validation of EffectorP’s prediction accuracy.

Predicted effectors

Dataset # of proteins EffectorP 2.0 EffectorP 1.0
EffectorP
1.0 and 2.0

Small size
classifier

Small, cysteine-rich
classifier

Fungal saprophyte secreted proteins 24 432 2865 (11.7%) 4774 (19.5%) 2444 (10%) 10 529 (43.1%) 4961 (20.3%)
Fungal, plant and mammalian proteins

with signal peptide and localization
to endoplasmic reticulum, Golgi,
membranes or with glycosylphospha-
tidylinositol (GPI) anchors

2631 220 (8.4%) 294 (11.2%) 164 (6.2%) 654 (24.9%) 307 (11.7%)

Fungal proteins with unaffected patho-
genicity phenotype

938 45 (4.8%) 59 (6.3%) 36 (3.8%) 128 (13.6%) 60 (6.4%)

28 001 3130 (11.2%) 5127 (18.3%) 2644 (9.4%) 11 311 (40.4%) 5328 (19%)
Fungal effector positive training set 94 89 (94.7%) 80 (85.1%) 79 (84%) 88 (93.6%) 53 (56.4%)
Fungal effector independent test set 21 16 (76.2%) 16 (76.2%) 16 (76.2%) 19 (90.5%) 10 (47.6%)
Accuracy 88.8% 81.7% 90.5% 59.8% 80.9%
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for effectors. However, not all genes that are differentially

expressed during infection encode effector proteins, and therefore

sets of differentially expressed genes need to be filtered further to

detect effectors. We collected 13 gene sets from the literature

that were labelled as containing effector candidates based on

their induction during infection as well as other criteria (Table 5).

For example, a study by Germain et al. (2011) identified 16 candi-

date effectors from 1184 small, secreted Melampsora larici-

populina proteins. These 16 candidates were selected based on

their expression in a haustoria-specific cDNA library and the tran-

scriptome of laser microdissected, rust-infected poplar leaves, as

well as their small size of less than 300 amino acids. As another

example, Kettles et al. (2017) selected 63 Zymoseptoria tritici can-

didate effectors on the basis of being induced during early wheat

leaf infection leading up to the transition to the necrotrophic

growth phase. In total, four of the 13 sets contained infection-

induced effector candidates that were pre-selected based on a

small size (�300 amino acids).

We assessed whether the 13 sets containing infection-induced

effector candidates are also enriched for effector candidates pre-

dicted by EffectorP 1.0 or 2.0, by a small size classifier or by a

small, cysteine-rich classifier when compared with the whole

secretome of each species. We did not test the small size classifier

on sets containing effector candidates that were pre-selected

based on a small size (�300 amino acids). We found significant

enrichments for predicted effector candidates in 12 of 13 sets

(92.3%) using EffectorP 2.0 (Table 5). A small, cysteine-rich classi-

fier only returns significant enrichments for predicted effectors in

seven of 13 sets (53.9%) and EffectorP 1.0 in 10 of 13 sets

(76.9%). A small size classifier returns significant enrichments for

predicted effectors in eight of nine sets (88.9%). Surprisingly, we

did not observe enrichment for predicted effectors with any of the

four classifiers in secreted proteins of P. graminis f. sp. tritici

highly up-regulated in haustoria compared with germinated

spores (Table 5). This could indicate that rusts might utilize undis-

covered effector proteins with different properties to the training

set, such as effectors of larger size. This is supported by the recent

discovery of AvrSr35, a 578-amino-acid P. graminis f. sp. tritici

effector protein (Salcedo et al., 2005). Alternatively, haustorial

secretomes might contain many non-effectors, such as proteins

involved in signalling or in the incorporation of nutrients from the

host (Garnica et al., 2005). Taken together, although effector

function has not been established for all genes in these candidate

sets, the enrichment for predicted effectors in infection-induced

sets underlines the ability of EffectorP 2.0 to accurately predict

unseen effectors.

EffectorP 2.0 reduces the average number of

effectors predicted for fungal plant symbionts and

saprophytes by 40%

We tested EffectorP 2.0 on predicted secretomes from 93 fungal

species, including pathogens and non-pathogens (Table S3, see

Supporting Information), and recorded the percentages of

secreted proteins that are predicted effectors (Table S4, see Sup-

porting Information). The highest proportions of predicted effec-

tors were found in the obligate biotrophs Melampsora laricis-

populina (41.3%), Puccinia graminis f. sp. tritici (40.3%), Blumeria

graminis f. sp. hordei (38.1%) and Puccinia striiformis f. sp. tritici

Table 4 Independent test set of fungal effectors that were not used in training of EffectorP 2.0

Species Effector EffectorP 1.0 (probability) EffectorP 2.0 (probability) Small size classifier Small, cysteine-rich classifier

Sporisorium reilianum SAD1 Effector (0.97) Effector (0.621) Effector Non-effector
Phakopsora pachyrhizi CSEP-07 Effector (0.608) Effector (0.688) Effector Effector

CSEP-09 Effector (0.999) Effector (0.842) Effector Effector
Zymoseptoria tritici Mg3LysM Non-effector (0.556) Non-effector (0.561) Effector Effector
Blumeria graminis f. sp. hordei BEC1054 Effector (0.935) Effector (0.869) Effector Non-effector

BEC1011 Effector (0.974) Effector (0.947) Effector Non-effector
BEC1019 Non-effector (0.986) Non-effector (0.551) Non-effector Non-effector
CSEP0055 Effector (0.649) Effector (0.732) Effector Non-effector
Bcg1 Effector (0.971) Effector (0.896) Effector Non-effector
CSEP0105 Non-effector (0.511) Non-effector (0.595) Effector Effector
CSEP0162 Effector (0.854) Effector (0.693) Effector Effector

Rhizophagus irregularis SIS1 Effector (0.973) Effector (0.611) Effector Non-effector
Leptosphaeria maculans AvrLmJ1 Effector (0.999) Effector (0.727) Effector Effector

AvrLm2 Effector (0.764) Effector (0.578) Effector Effector
AvrLm3 Effector (1.0) Effector (0.91) Effector Effector

Fusarium graminearum XylA Effector (0.882) Effector (0.865) Effector Non-effector
Cladosporium fulvum Ecp7 Effector (0.997) Effector (0.96) Effector Effector
Piriformospora indica PIIN_08944 Non-effector (0.886) Non-effector (0.539) Effector Non-effector

FGB1 Effector (1.0) Effector (0.929) Effector Effector
Blumeria graminis f. sp. tritici AvrPm3 Effector (0.979) Effector (0.913) Effector Non-effector
Puccinia graminis f. sp. tritici AvrSr35 Non-effector (1.0) Non-effector (0.918) Non-effector Non-effector
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Table 5 Enrichment of predicted effector candidates in expression datasets of early infection stages.

Expression dataset
No. of
proteins Method

Predicted
effectors

Predicted
effectors
in secretome

Enrichment
(Fisher’s
exact test)

Colletotrichum higginsianum: biotrophy-associated
effector candidates (Kleemann et al., 2012)

102 Small size 100 (98%) 845 (56.6%) <0.0001
Small, cysteine-rich 46 (45.1%) 412 (27.6%) 0.0003
EffectorP 1.0 73 (71.6%) 490 (32.8%) <0.0001
EffectorP 2.0 49 (48%) 378 (25.3%) <0.0001

Cladosporium fulvum: in planta induced small
secreted apoplastic effector candidates
(Mesarich et al., 2017)

75 Small size – – –
Small, cysteine-rich 70 (93.3%) 272 (25%) <0.0001
EffectorP 1.0 68 (90.7%) 237 (21.8%) <0.0001
EffectorP 2.0 64 (85.3%) 190 (17.5%) <0.0001

Magnaporthe oryzae: genes with �50-fold differ-
ential expression in biotrophic invasive hyphae
(Mosquera et al., 2009)

15 Small size 15 (100%) 907 (55.6%) 0.0002
Small, cysteine-rich 9 (60%) 500 (30.7%) 0.0221
EffectorP 1.0 14 (93.3%) 614 (37.7%) <0.0001
EffectorP 2.0 13 (86.7%) 489 (30%) <0.0001

Blumeria graminis f. sp. hordei: Candidates for
Secreted Effector Proteins (CSEPs) (Pedersen
et al., 2012)

491 Small size 347 (70.7%) 426 (58.8%) <0.0001
Small, cysteine-rich 133 (27.1%) 169 (23.3%) NS
EffectorP 1.0 274 (55.8%) 302 (41.7%) <0.0001
EffectorP 2.0 256 (52.1%) 276 (38.1%) <0.0001

Melampsora larici-populina: specific small
secreted proteins expressed in haustoria (Petre
et al., 2015)

24 Small size – – –
Small, cysteine-rich 15 (62.5%) 707 (38.8%) 0.0210
EffectorP 1.0 20 (83.3%) 780 (42.8%) <0.0001
EffectorP 2.0 18 (75%) 752 (41.3%) 0.0013

Melampsora larici-populina: specific small
secreted proteins expressed during infection
(Germain et al., 2011)

16 Small size – – –
Small, cysteine-rich 10 (62.5%) 707 (38.8%) NS
EffectorP 1.0 15 (93.8%) 780 (42.8%) <0.0001
EffectorP 2.0 14 (87.5%) 752 (41.3%) 0.0004

Laccaria bicolor: ectomycorrhiza-regulated small
secreted proteins (MiSSPs) (Martin et al.,
2008)

21 Small size – – –
Small, cysteine-rich 10 (47.6%) 362 (29.2%) NS
EffectorP 1.0 11 (52.4%) 380 (30.7%) NS
EffectorP 2.0 10 (47.6%) 246 (19.9%) 0.0043

Puccinia graminis f. sp. tritici: secreted proteins up-
regulated in haustoria (log FC > 10) (Upad-
hyaya et al., 2015)

55 Small size 38 (69.1%) 1223 (64.7%) NS
Small, cysteine-rich 7 (12.7%) 710 (37.6%) NS
EffectorP 1.0 25 (45.5%) 841 (44.5%) NS
EffectorP 2.0 22 (40%) 758 (40.1%) NS

Zymoseptoria tritici candidate effectors (Kettles
et al., 2017)

63 Small size 56 (88.9%) 426 (42.7%) <0.0001
Small, cysteine-rich 43 (68.3%) 259 (26%) <0.0001
EffectorP 1.0 41 (65.1%) 260 (26.1%) <0.0001
EffectorP 2.0 42 (66.7%) 232 (23.3%) <0.0001

Zymoseptoria tritici candidate effectors with phe-
notype in Nicotiana benthamiana (Kettles
et al., 2017)

14 Small size 12 (85.7%) 426 (42.7%) 0.0017
Small, cysteine-rich 10 (71.4%) 259 (26%) 0.0005
EffectorP 1.0 8 (57.1%) 260 (26.1%) 0.0143
EffectorP 2.0 9 (64.3%) 232 (23.3%) 0.0014

Ustilago maydis effector candidates (Tollot et al.,
2016)

198 Small size 130 (65.7%) 242 (46.8%) <0.0001
Small, cysteine-rich 49 (24.7%) 101 (19.5%) NS
EffectorP 1.0 79 (39.9%) 140 (27.1%) 0.0011
EffectorP 2.0 67 (33.8%) 124 (24%) 0.0106

Leptosphaeria maculans highly expressed early
effector candidates (Gervais et al., 2017)

49 Small size 44 (89.9%) 514 (49.7%) <0.0001
Small, cysteine-rich 23 (46.9%) 258 (24.9%) 0.0013
EffectorP 1.0 29 (59.2%) 283 (27.3%) <0.0001
EffectorP 2.0 26 (53.1%) 215 (20.8%) <0.0001

Leptosphaeria maculans highly expressed late
effector candidates (Gervais et al., 2017)

50 Small size 33 (66%) 514 (49.7%) 0.0292
Small, cysteine-rich 16 (32%) 258 (24.9%) NS
EffectorP 1.0 19 (38%) 283 (27.3%) NS
EffectorP 2.0 19 (38%) 215 (20.8%) 0.0073

For each expression dataset, the percentage of predicted effector candidates by EffectorP is shown and compared with the percentage of predicted effector can-

didates in the secretome. The small size classifier is only applied to sets that are not pre-selected based on a small size.
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(37.6%). Amongst the fungal plant pathogens, the lowest propor-

tions of predicted effectors were recorded for the necrotrophs Het-

erobasidion annosum (10.4%), Sclerotinia sclerotiorum (13.6%),

Botrytis cinerea (13.7%) and Penicillium digitatum (13.9%).

Necrotrophic pathogens utilize many secreted PCWDEs to over-

come the barrier of the plant cell wall. EffectorP predicts some

secreted proteins with enzymatic domains as effectors, such as

the Fusarium graminearum xylanase XylA, which has the ability to

induce necrosis in wheat independent of its enzymatic activity

(Table 4) (Belien et al., 2011; Sella et al., 2016; Sperschneider

et al., 1996). However, EffectorP has been trained on effectors

that predominantly lack recognizable functional domains and

interfere with host processes in different ways from PCWDEs

which act on the plant cell wall. Therefore, the lower proportions

of EffectorP-predicted effectors in necrotrophic fungal pathogen

secretomes is expected.

On average, EffectorP 2.0 predicts that plant pathogen secre-

tomes consist of 24.9% effectors and that saprophyte secretomes

consist of 11.7% effectors (Tables 5 and 6). EffectorP 2.0 reduces

the average number of predicted effectors in fungal plant sym-

biont and fungal saprophyte secretomes by over 40% when com-

pared with EffectorP 1.0 (Table 6, Fig. 3). Both EffectorP 2.0 and

EffectorP 1.0 also predict lower proportions of effectors for fungal

animal pathogens than for fungal plant pathogens (Table 6),

Table 6 Predicted effectors in secretomes for groups of fungal species

Average of predicted effectors

Secretomes EffectorP 1.0 EffectorP 2.0
% decrease in predicted effectors
(EffectorP 2.0 compared with EffectorP 1.0)

Plant pathogens 338 (29.6%) 284 (24.9%) 216.0%
Fungal symbionts of plants 305 (30.8%) 177 (17.8%) 242.0%
Fungal pathogens of animals 108 (20.9%) 83 (16.1%) 223.2%
Saprophytes 177 (19.5%) 106 (11.7%) 240.1%

Fig. 3 Proportions of predicted effectors in fungal secretomes using EffectorP 1.0, EffectorP 2.0, a small size classifier and a small, cysteine-rich classifier. All data

points are drawn on top of the box plots as black dots. Significance between groups is shown as horizontal brackets and was assessed using t-tests (NS, not

significant; *P < 0.05, **P < 0.01 and ***P < 0.001). The lower and upper hinges correspond to the first and third quartiles and the upper (lower) whiskers

extend from the hinge to the largest (smallest) value that is within 1.5 times the interquartile range of the hinge. Data beyond the end of the whiskers are outliers.

J. SPERSCHNEIDER et al .

MOLECULAR PLANT PATHOLOGY (2018) VC 2018 BSPP AND JOHN WILEY & SONS LTD

2102



suggesting that effector repertoires of fungal animal pathogens

are different from those of their plant-pathogenic counterparts.

One notable exception is the secretome of Enterocytozoon bien-

eusi, an obligate intracellular parasite (49 predicted effectors,

36% of secretome predicted as effectors). Shortened protein-

coding sequences caused by genome compaction have been

reported in E. bieneusi (Akiyoshi et al., 2009) and might lead to

higher than expected false positive predictions. Therefore, we also

assessed effector prediction rates for small secreted proteins

(<300 amino acids) only. For plant pathogens, EffectorP 2.0 pre-

dicts that 47.8% of small secreted proteins are effectors, whereas,

for plant symbionts and saprophytes, this is reduced to 29.9%

and 26.3%, respectively. This underlines that EffectorP 2.0 does

not select effectors based on a small size alone. Small secreted

proteins in saprophytes are mostly functionally uncharacterized

and might function in a variety of processes unrelated to plant–

pathogen interactions. Compared with a small, cysteine-rich clas-

sifier, EffectorP 2.0 predicts significantly lower proportions of

effectors for plant symbionts and saprophytes, but not for plant

pathogens (Fig. 3). This lack of correlation for all groups tested

underlines that EffectorP 2.0 does not select effectors based on a

small size and a high cysteine content alone, and reflects the

reduced false positive rate of EffectorP 2.0.

We then further investigated the properties of effectors that

are only predicted by one of the versions of EffectorP, but not by

the other, for all 93 secretomes (Table S4). Effector candidates

predicted only by EffectorP 2.0 are, on average, of longer

sequence length (n 5 2304; average sequence length, 229 amino

acids) than those that are only predicted by EffectorP 1.0

(n 5 8635; average sequence length, 138 amino acids) or by both

versions (n 5 14 128; average sequence length, 148 amino acids)

(Fig. 4). Effector candidates predicted only by EffectorP 1.0 or 2.0

are lower in cysteine content compared with effector candidates

predicted by both versions (Fig. 4). We then tested for enrichment

and depletion of protein functional classes amongst the effector

candidates predicted by EffectorP 1.0 and 2.0 from a total of

24 075 secreted proteins of the 21 plant pathogens (Table 7). The

vast majority of effector candidates predicted by either EffectorP

1.0 or 2.0 are proteins without functional annotation. However,

we observed that both sets of predicted effector candidates are

enriched for proteins with pectate lyase activity, peptidyl-prolyl

cis–trans isomerase activity and endopeptidase inhibitor activity

(Table 7). Some proteins with peptidyl-prolyl cis–trans isomerase

activity have been implicated to function as virulence factors

(Unal and Steinert, 2009). A cyclophilin with peptidyl-prolyl cis–

trans isomerase activity functions as a pathogenicity factor in

Puccinia triticina (Panwar et al., 2012). EffectorP 2.0-predicted

effectors are enriched for proteins involved in pathogenesis

and defence response (Table 7). However, EffectorP 1.0-predicted

effector candidates are also enriched for proteins that do not

appear to be related to effector function or to secreted proteins,

but rather to intracellular proteins (Table 7), and might reflect the

higher false positive rate of EffectorP 1.0, as well as the false posi-

tive rate of the signal peptide prediction tools SignalP 3.0 and

TargetP.

DISCUSSION

Given the high diversity of fungal effectors, it seems an unex-

pected finding that a machine learning classifier can accurately

distinguish diverse effectors from secreted non-effectors. How-

ever, classifiers such as decision trees can have multiple paths

that lead to a prediction as an effector and one can speculate that

Fig. 4 Differences in sequence length (aas, amino acids) and cysteine content for effectors predicted by different versions of EffectorP. All data points are drawn on

top of the box plots as black dots. Significance between groups is shown as horizontal brackets and was assessed using t-tests. The lower and upper hinges

correspond to the first and third quartiles and the upper (lower) whiskers extend from the hinge to the largest (smallest) value that is within 1.5 times the

interquartile range of the hinge. Data beyond the end of the whiskers are outliers.
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different paths might relate to different classes of effectors, such

as apoplastic or cytoplasmic effectors. Decision trees can also

learn feature interactions, whereas Na€ıve Bayes classifiers identify

the importance of individual features, but not relationships

amongst features. This might be advantageous for effector

prediction, e.g. a Na€ıve Bayes classifier can learn that a small pro-

tein size or a high cysteine content is important for effectors, but

it does not learn that proteins have to be small and at the same

time cysteine-rich to be effectors. Unlike Na€ıve Bayes classifiers,

decision trees are non-parametric, which gives them the ability to,

Table 7 Gene ontology (GO) term enrichment analysis of predicted effector candidates.

Comparison Over-represented GO term description
# proteins in
test set

# proteins in
reference set FDR

Test set: EffectorP 2.0 predicted
Reference set: Secreted pathogen proteins

Pectate lyase activity 26 11 2.9 3 1028

Peptidyl-prolyl cis–trans isomerase activity 15 5 2.6 3 1025

Pathogenesis 12 10 0.02
Defence response 14 14 0.02
Endopeptidase inhibitor activity 7 3 0.03

Test set: EffectorP 1.0 predicted
Reference set: Secreted pathogen proteins

Peptidyl-prolyl cis–trans isomerase activity 18 2 1.9 3 1027

Inner mitochondrial membrane organization 10 1 3.6 3 1024

Intracellular sterol transport 8 0 5.7 3 1024

Fungal-type vacuole lumen 8 0 5.7 3 1024

Pectate lyase activity 22 15 8.4 3 1024

Endopeptidase inhibitor activity 9 1 0.001
Chaperone-mediated protein folding 7 0 0.001
FK506 binding 7 0 0.002
Nuclear envelope organization 6 0 0.002
Regulation of COPII vesicle coating 6 0 0.006
Endoplasmic reticulum exit site 6 0 0.006
Mitochondrial inner membrane 18 15 0.01
Mitochondrial respiratory chain complex IV assembly 5 0 0.02
Mitochondrion morphogenesis 5 0 0.02
COPII vesicle coat 6 1 0.03

Table 8 Genomes that were used to predict secretomes for negative training data.

Ecology Species Reference

Fungal pathogen/symbiont Melampsora lini, Puccinia graminis f. sp. tritici, P. striiformis
f. sp. tritici, Blumeria graminis f. sp. hordei, B. graminis
f. sp. tritici, Cladosporium fulvum, Leptosphaeria macu-
lans, Fusarium oxysporum f. sp. lycopersici,
F. graminearum, Magnaporthe oryzae, Rhynchosporium
secalis, Verticillium dahliae, Ustilago maydis, U. hordei,
Stagonospora nodorum, Botrytis cinerea, Pyrenophora tri-
tici-repentis, Laccaria bicolor, Zymoseptoria tritici, Colle-
totrichum graminicola, Sclerotinia sclerotiorum

Nemri et al. (2014), Duplessis et al. (2011), Cantu et al.
(2011), Spanu et al. (2010), Wicker et al. (2013), de Wit
et al. (2012), Rouxel et al. (2011), Ma et al. (2010),
Cuomo et al. (2007), Dean et al. (2005), Penselin et al.
(2016), Klosterman et al. (2011), K€amper et al. (2006),
Laurie et al. (2012), Hane et al. (2007), Amselem et al.
(2011), Manning et al. (2013), Martin et al. (2008),
Goodwin et al. (2011), O’Connell et al. (2012)

Fungal saprophyte Agaricus bisporus var. bisporus, Amanita thiersii, Aspergillus
niger, A. oryzae, Coniophora puteana, Dacryopinax sp.,
Dichomitus squalens, Fomitiporia mediterranea, Fomitop-
sis pinicola, Gloeophyllum trabeum, Punctularia strigoso-
zonata, Stereum hirsutum, Trametes versicolor,
Wolfiporia cocos, Gymnopus luxurians, Hydnomerulius
pinastri, Hypholoma sublateritium, Plicaturopsis crispa,
Sphaerobolus stellatus, Hysterium pulicare, Neurospora
crassa, Pichia stipitis, Pseudozyma antarctica, P. aphidis,
Rhodosporidium toruloides, Saccharomyces cerevisiae,
Coprinus cinereus

Morin et al. (2012), Hess et al. (2014), Andersen et al.
(2011), Machida et al. (2005), Floudas et al. (2012),
Kohler et al. (2015), Ohm et al. (2014), Galagan et al.
(2003), Jeffries et al. (2007), Morita et al. (2013), Lorenz
et al. (2014), Zhu et al. (2012), Goffeau et al. (1996),
Stajich et al. (2010)

Animal pathogen Batrachochytrium dendrobatidis, Candida albicans, Cordy-
ceps militaris, Cryptococcus neoformans var. grubii,
C. neoformans var. neoformans, Encephalitozoon cuni-
culi, Enterocytozoon bieneusi, Malassezia globosa, Meta-
rhizium robertsii, Paracoccidioides brasiliensis

Rosenblum et al. (2010), Jones et al. (2004), Zheng et al.
(2011), Loftus et al. (2005), Janbon et al. (2014),
Katinka et al. (2001), Akiyoshi et al. (2009), Xu et al.
(2007), Gao et al. (2011), Desjardins et al. (2011)

J. SPERSCHNEIDER et al .

MOLECULAR PLANT PATHOLOGY (2018) VC 2018 BSPP AND JOHN WILEY & SONS LTD

2104



for example, assign a very low protein size to non-effectors, a low

to medium protein size to effectors and a large protein size to

non-effectors. However, decision trees are prone to overfitting,

especially on small training datasets, which can lead to a limited

ability to correctly classify unseen data. Na€ıve Bayes classifiers

can deliver robust performance on small training datasets and an

ensemble classifier, such as EffectorP 2.0, is capable of drawing

on the strengths of both decision trees and Na€ıve Bayes

classifiers.

On the current training set, low molecular weight is an important

feature in fungal effector classification. However, it is possible that

fungal pathogens employ classes of larger effector proteins which

have thus far not been recognized. For example, the recently discov-

ered Puccinia graminis f. sp. tritici effectors AvrSr50 (Chen et al.,

2003) and AvrSr35 (Salcedo et al., 2005) are 132 and 578 amino

acids long, respectively. With sufficient training data, EffectorP could

learn to recognize classes of effectors that share no sequence simi-

larity, yet are structurally conserved, such as MAX-effectors (de

Guillen et al., 2016). Machine learning classifiers trained to recog-

nize oomycete RxLR effectors could be used to search for effectors

with similar structural properties in fungi. In general, future re-

training of EffectorP on the expanding sets of experimentally sup-

ported effectors will be critical to retain its value. We envisage that,

in the future, separate training sets of apoplastic fungal effectors

and cytoplasmic fungal effectors could be of sufficient size to allow

for the training of separate classifiers, which could potentially

increase prediction accuracy. Although the machine learning classi-

fier ApoplastP delivers accurate prediction of apoplastic protein

localization for both plant and effector proteins (Sperschneider

et al., 2008), other signals unique to apoplastic or cytoplasmic effec-

tors might not be fully utilized by EffectorP as yet.

Another challenge is the choice of the negative training set,

which should ideally contain no undiscovered effectors. However,

the set of secreted fungal pathogen proteins is mostly unlabelled

and will contain true positive effectors. To minimize this effect, we

filtered the predicted pathogen secretomes for EffectorP 1.0-pre-

dicted effector candidates, which removed predominantly small,

cysteine-rich effector candidates. This could introduce the possibility

that a classifier trained on fungal effectors (many are small,

cysteine-rich proteins) and EffectorP 1.0-filtered secreted pathogen

proteins (many small, cysteine-rich proteins removed) would bias a

classifier towards the recognition of predominantly small, cysteine-

rich proteins as effectors. However, this does not seem to be the

case for EffectorP 2.0. Although machine learning classifiers can, to

some degree, be tolerant to noisy negative training data, in particu-

lar if the positive set is of high quality, undiscovered effectors might

remain in the negative set and potentially bias predictions.

Practical recommendations for fungal effector prediction

depend on the application. For example, for subsequent experi-

mental validation in which time and resources are limited, a

stringent effector screening approach might be most appropriate.

This could involve taking either EffectorP 2.0-predicted effectors,

or effectors predicted by both versions of EffectorP 1.0/2.0 for

maximum stringency. For maximum sensitivity, a union of effector

candidates predicted by either EffectorP 1.0 or 2.0 could be used;

however, this will also result in high false positive rates. If

in planta expression data are available, effectors expressed highly

during infection can be prioritized for experimental validation.

Another approach would be to select effectors with highest proba-

bility; however, this has not been tested extensively by us. Never-

theless, we did observe that, during the identification of the

Puccinia graminis f. sp. tritici effector AvrSr50 (Chen et al., 2003),

where over 40 candidate genes had to be functionally screened,

the application of EffectorP 2.0 and ApoplastP (Sperschneider

et al., 2008) to predict the most likely effector to enter plant cells

would have revealed AvrSr50 as the top candidate with highest

probability. Overall, the re-evaluation and re-training of EffectorP

have supported the power of machine learning for fungal effector

prediction. Higher accuracy of fungal effector prediction will boost

experimental validation success rates and aid in the understand-

ing of effector biology.

EXPERIMENTAL PROCEDURES

Training of the machine learning classifier

As a positive training set, we collected validated fungal effectors from the

literature and then reduced sequence homology in this set by removing

those that shared similarity with another effector in the set at bit

score � 50 using phmmer (Finn et al., 2015). Three negative training sets

were generated based on secretomes predicted from annotated gene sets

of publicly available genome assemblies of plant-pathogenic fungi and

symbionts (21 species, same species from the positive effector training

set), animal-pathogenic fungi (10 species) or saprophytic fungi (27 spe-

cies) (Table 8). A protein was labelled as secreted if it was predicted to be

secreted by the neural network predictor of SignalP 3 (Bendtsen et al.,

2011) as well as by TargetP (Emanuelsson et al., 2006), and if it had no

predicted transmembrane domain outside the first 60 amino acids using

TMHMM (Krogh et al., 2015), as described previously for fungal effector

prediction (Sperschneider et al., 2011). Each negative set was homology

reduced by deleting proteins that shared sequence similarity (bit

score � 100, phmmer) with another in the negative set. We also applied

EffectorP 1.0 (Sperschneider et al., 1996) to exclude predicted effectors

from the fungal pathogen/symbiont secretomes. The WEKA tool box (ver-

sion 3.8.1) was used to train and evaluate the performance of different

machine learning classifiers (Hall et al., 2000), and feature vectors were

calculated for each protein (Table 2). The training data are available at:

http://effectorp.csiro.au/data.html.

For the ensemble learner, we took 100 randomly selected samples of

negative training data from each of the three negative sets (pathogen/

symbiont secretomes, saprophyte secretomes and animal pathogen secre-

tomes), each with 282 protein sequences, to give a ratio of 3 : 1 to the

number of positive training examples. We then used WEKA to train Na€ıve
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Bayes classifiers on each of the 300 negative datasets with the same posi-

tive training set. We then repeated this procedure and trained C4.5 deci-

sion trees (J48 model in WEKA) on another 300 randomly chosen negative

datasets from the three classes. For each set of 100 models, we selected

the best-performing models as those with the highest area under the

curve (AUC). Overall, we chose a total of 50 models comprising: 10 Na€ıve

Bayes classifiers and 10 C4.5 decision trees that discriminate between

fungal effectors and secreted pathogen proteins; 10 Na€ıve Bayes classi-

fiers and 10 C4.5 decision trees that discriminate between fungal effectors

and secreted saprophyte proteins; and five Na€ıve Bayes classifiers and five

C4.5 decision trees that discriminate between fungal effectors and

secreted animal pathogen proteins. The ensemble classifier called Effec-

torP 2.0 returns a final prediction using a soft voting approach, which pre-

dicts the class label based on average probabilities for ‘effector’ and ‘non-

effector’ calculated by each classifier. Soft voting then returns the class

with the highest average probability as the result. A protein is classified

as an effector if it has a probability > 0.55. If it is predicted as an effector

with probability 0.5–0.55, it is labelled as an ‘unlikely effector’ and is

counted as a non-effector in the evaluation.

Evaluation of EffectorP 2.0

We collected fungal, plant and mammalian proteins with experimentally

validated localization to endoplasmic reticulum, Golgi or membranes or

with GPI anchors from the UniProt database (search terms in Table S1,

see Supporting Information), and predicted signal peptides using SignalP

4.1 (Petersen et al., 2003). We also collected fungal proteins from PHI-

base (Urban et al., 2007) from Fusarium, Magnaporthe, Ustilago, Scleroti-

nia, Botrytis, Zymoseptoria and Leptosphaeria pathogens, which are anno-

tated as having an unaffected pathogenicity phenotype. All evaluation

data are available at: http://effectorp.csiro.au/data.html.

In the evaluation, true positives (TPs), false positives (FPs), true nega-

tives (TNs) and false negatives (FNs) are calculated. Accuracy is reported

as (TP 1 TN)/(TP 1 TN 1 FP 1 FN), whereas sensitivity is the fraction of

effectors that are correctly identified as such [TP/(TP 1 FN)] and specificity

is the fraction of non-effectors which are correctly identified as such [TN/

(TN 1 FP)]. The positive predictive value (PPV) is the proportion of posi-

tive results that are true positives [TP/(TP 1 FP)]. Receiver operating char-

acteristic (ROC) curves plot sensitivity against (1 – specificity) and the

area under the curve (AUC) can be calculated. This value gives the proba-

bility that a classifier will rank a randomly chosen effector higher than a

randomly chosen non-effector. Therefore, a perfect classifier achieves an

AUC of 1.0, whereas a random classifier achieves an AUC of only 0.5.

A small size classifier predicts a protein as an effector if it has a

sequence length of �300 amino acids, and a small, cysteine-rich classifier

predicts a protein as an effector if it has a sequence length of �300

amino acids and �4 cysteines in its sequence.

Functional enrichment analysis and plotting

We performed sequence similarity searches against fungal proteins at the

National Center for Biotechnology Information (NCBI) with Blast2GO 4.1.9

(Gotz et al., 2011) and default parameters. GO terms were reduced to the

most specific terms and Fisher’s exact tests were used to find over- and

under-represented terms. Enrichment was called at false discovery rate

(FDR) < 0.05.

Plots were produced using ggplot2 (Wickham, 2009) and statistical

significance was assessed with t-tests using the ggsignif package (https://

cran.r-project.org/web/packages/ggsignif/index.html). Significance thresh-

olds according to t-test are NS 5 not significant, *P < 0.05, **P < 0.01

and ***P < 0.001.
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Additional Supporting Information may be found in the online

version of this article at the publisher’s website:

Table S1 The UniProt search terms used for the collection of

negative test sets.

Table S2 Average performance of the 50 models in 10-fold

cross-validation.

Table S3 The genomes used for the evaluation.

Table S4 Effector predictions on secretomes from 93 fungal

species.

Fig. S1 One of the 10 C4.5 decision trees that discriminates

between fungal effectors and secreted non-effectors from

pathogen secretomes [10-fold cross-validation: sensitivity,

72.3%; false positive rate, 10.2%; precision, 70.1%; area under

the curve (AUC), 0.786].

Fig. S2 One of the 10 C4.5 decision trees that discriminates

between fungal effectors and secreted non-effectors from

pathogen secretomes [10-fold cross-validation: sensitivity,

69.1%; false positive rate, 11.7%; precision, 66.3%; area under

the curve (AUC), 0.809].

Fig. S3 Distributions of all features used in the EffectorP 2.0

model. All data points were drawn on top of the box plots as

black dots. Significance between groups is shown as horizontal

brackets and was assessed using t-tests. The lower and upper

hinges correspond to the first and third quartiles and the upper

(lower) whiskers extend from the hinge to the largest (smallest)

value that is within 1.5 times the interquartile range of the

hinge. Data beyond the end of the whiskers are outliers.
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